柔性可穿戴電子器件具有質輕、易結合皮膚、能承受力學變形,逐漸在日常生活中嶄露頭角。然而,目前所采用的傳(chuan) 感器,普遍需要使用外部供能驅動,極大的限製了柔性可穿戴優(you) 勢的極致發揮。另外,人體(ti) 從(cong) 機械運動、關(guan) 節旋轉等過程可以產(chan) 生可用的電能,這就給利用先進的能量收集技術給柔性可穿戴電子器件供能提供了極好的機會(hui) 。因此,設計自供能、可穿戴電子器件有望實現這些設備的永久供能,具有重大科學意義(yi) 和應用前景。
近日,閩江學院張誠博士、王軍(jun) 教授與(yu) 美國賓州州立大學程寰宇教授、南京大學唐少龍教授等合作,報道了利用柔性可延展的納米發電機及微型超級電容器陣列為(wei) 褶皺石墨烯力學傳(chuan) 感器的供能策略。論文以“High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems”為(wei) 題發表在Nano Energy 上。
研究人員利用贗電容特性的ZnP多孔超薄納米片與(yu) 激光直寫(xie) 石墨烯(LIG)複合材料製備了島橋構型的叉指結構微型超級電容器陣列。兩(liang) 種不同儲(chu) 能機理電極材料的高效複合,實現了電容器在不犧牲功率密度和循環壽命的條件下大幅提升其能量密度;借助微型超級電容器陣列的串聯/並聯,有效的調控了儲(chu) 能係統的輸出電壓/電流特性。
圖1:利用柔性可延展的納米發電機收集能量、微型超級電容器陣列存儲(chu) 能量驅動褶皺石墨烯力學傳(chuan) 感器的示意圖及機電性能圖。
研究人員利用預拉伸策略構建了基於(yu) 褶皺金的納米發電機和基於(yu) 少數層褶皺石墨烯的力學傳(chuan) 感器,並獲得了納米發電機和力學傳(chuan) 感器的柔性可延展特性,為(wei) 設計高性能柔性可延展電子器件提供了新的設計思路。
圖2:微型超級電容器陣列串聯/並聯的結構圖、電學示意圖、電容性能及在拉伸過程中的電學輸出性能。
研究發現,利用整流技術,基於(yu) 柔性可延展的納米發電機、微型超級電容器陣列驅動的力學傳(chuan) 感器表現出優(you) 異的機電性能,其應變靈敏係數高達354。該策略為(wei) 開發自供能、柔性可延展電子器件鋪平了道路。
轉載請注明出處。